Morphing and moving matter: mimicking nature
Dr Mingchao Liu
Morphing and moving matter: mimicking nature
Nature's ingenuity serves as a profound source of inspiration for developing advanced materials and robotic systems. In this presentation, we explore how biological phenomena inform innovative engineering solutions, focusing on morphing structures and moving mechanisms, both grounded in our understanding of the underlaying mechanics principles. We highlight morphing structure designs inspired by the segmentation architectures found in biological organisms and the dehydration-induced corrugated folding observed in Rhapis excelsa leaves. These designs emphasize adaptability and efficient shape transformation, showcasing the potential for creating functional, morphable systems. Additionally, we examine moving mechanisms, featuring a snap-through enabled insect-scale jumping robot modeled after click beetles and a magnetic robot inspired by the coordinated movements of cilia. These systems prioritize effective modeling to achieve rapid, efficient motion and agile navigation in complex environments. By integrating principles from biology and mechanics, this presentation illustrates how natural strategies can lead to cutting-edge technological advancements, offering new perspectives on the design and modeling of intelligent systems.