Data-Driven Science and Engineering Seminars

Data-Driven Science and Engineering Seminars

AI Institute in Dynamic Systems

Our mission is to develop the next generation of advanced machine learning tools for controlling complex physical systems by discovering physically interpretable and physics-constrained data-driven models through optimal sensor selection and placement. Our work is anchored by a common task framework that evaluates the performance of machine learning algorithms, architectures, and optimization schemes for the diverse tasks required in engineering applications. We will push beyond the boundaries of modern techniques by closing the loop between data collection, control, and modeling, creating a unique and cross-disciplinary architecture for learning physically interpretable and physics constrained models of complex dynamic systems from time series data.

Speakers
Community
Dr. Ana Larrañaga Janeiro
Dr. Shaowu Pan
Tim Otto
Dr. Andrei A. Klishin
Dr Nicolò Botteghi
Dr. Nur Aiman Fadel
Dr Lama Hamadeh
TB
+25
AI Institute in Dynamic Systems
AI Institute in Dynamic Systems

Upcoming live seminars

February 2025

SuMoTuWeThFrSa
1
2345678
9101112131415
16171819202122
232425262728
University of California, Berkeley

Advances in Advancing Interfaces: The Mathematics of Manufacturing of Industrial Foams, Fluidic Devices, and Automobile Painting

Dr. James Sethian
James Sethian
University of California, Berkeley
Friday, February 28, 2025 8:00 PM (UTC)
RSVP to seminar

Published seminars

Universidade de Vigo

Learning the shape: streamlining data needs in 2D irregular contour parameterization

Ana Larrañaga Janeiro, CINTECX
University of Washington

Statistical mechanics lessons for data-driven methods

Andrei A. Klishin, University of Hawaiʻi at Mānoa
University of Twente

Data Efficient, Robust, and Interpretable Deep Reinforcement Learning for Robotics and Dynamical Systems

Nicolò Botteghi, University of Twente
United States Naval Research Laboratory

Enabling Model Reduction of Meshless Nonlocal Methods via Modal Reference Spaces

Steven Rodriguez, United States Naval Research Laboratory
Iowa State University

Multi-scale Modeling and Simulations using Digital Twins

Adarsh Krishnamurthy, Iowa State University
Colorado School of Mines

Using Hamilton-Jacobi PDEs for Optimization

Samy Wu Fung, Colorado School of Mines
University of Colorado Boulder

The Surprising Robustness and Computational Efficiency of Weak Form System Identification

David Bortz, University of Colorado Boulder
Massachusetts Institute of Technology

Symmetry’s made to be broken: Learning how to break symmetry with symmetry-preserving neural networks

Tess Smidt, Massachusetts Institute of Technology
University of Washington

Double Dipping: Problems and solutions, with applications to single-cell RNA-sequencing data

Daniela Witten, University of Washington