Base-Metal Catalysis - presented by Prof. Lingling Chu and Assoc. Prof. Ming Joo Koh and Prof. Zhan Lu and Assoc. Prof. Tatsuhiko Yoshino and Prof. Naohiko Yoshikai

Base-Metal Catalysis

Lingling Chu, Ming Joo Koh, Zhan Lu and Tatsuhiko Yoshino

Prof. Lingling ChuAssoc. Prof. Ming Joo KohAssoc. Prof. Tatsuhiko YoshinoProf. Zhan Lu
Slide at 54:51
National University of Singapore
Independent career at NUS
A. Alkene functionalization
C. Heterogeneous catalysis (collaboration)
Heck-type
Hydro
(Ni)
RESEARCH
functionalisation
X = C.B.Si. N
Readily available
GROUP
Inexpensive
Dicarbo
Feedstock chemical
functionalisation
Complex Reaction
In-Situ Monitoring
Chem 2020 6. 738
Nat Chem. 2022 14. 188
Nat Catal 2020. 3. 585
ACS Catal 2022 12. 724.
Chemoselectivity
Dynamic Structure
Nat Commun 2020 11. 5857
Chem Catal 2022 2, 508.
Base metal
Pharmaceuticals
JACS, 2020. 142, 21410
ACIE, 2022 61. e202202674
catalysis
Sci. Adv 2019. 5. eaay1537
ACIE, 2021, 60, 2104
Nat Catal 2022 5. 934
Adv. Mater. 2020 32. 1906437
JACS, 2021. 143, 9498
Chem. Soc. Rev. 2023. 52, 2946
J. Mater Chem A 2021. 9. 11427
Nat Catal 2021. 4. 674
Nat Catal 2023 in press
Natl. Sci. Rev. 2023 10. nwac100
Radical
Nature 2023 DOI: 10.1038/s41586-023-06529-z
B. Carbohydrate synthesis
Glycosyl alkylation
chemistry
D. Upcycling waste plastics (collaboration)
Glycosyl arylation
activation
functionalization
Glycosyl alkenylation
Glycosyl radical
waste plastics
Activated
Plastic-derived
waste plastics
functional polymers
Glycosyl alkynylation
Chem 2021. 7. 3377
Nat Synth. 2022 1. 235.
Glycosyl sulfuration
TOWARDS
ZERO WASTE
Nat Synth 2022 1. 967
ACIE, 2022 61, e202211043
ACIE, 2023, 62, e202301081
ACIE, 2023. 62, e202214247
ACIE, 2023. 62, e202305138
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
References
  • 1.
    T. Yang et al. (2020) Broadly Applicable Directed Catalytic Reductive Difunctionalization of Alkenyl Carbonyl Compounds. Chem
  • 2.
    X. Yu et al. (2020) Site-selective alkene borylation enabled by synergistic hydrometallation and borometallation. Nature Catalysis
  • 3.
    X. Chen et al. (2020) Alkyl halides as both hydride and alkyl sources in catalytic regioselective reductive olefin hydroalkylation. Nature Communications
  • 4.
    T. Yang et al. (2020) Chemoselective Union of Olefins, Organohalides, and Redox-Active Esters Enables Regioselective Alkene Dialkylation. Journal of the American Chemical Society
  • 5.
    X. Yu et al. (2020) Iron‐Catalyzed Regioselective Alkenylboration of Olefins. Angewandte Chemie International Edition
  • 6.
    C. Liu et al. (2021) Catalytic Regioselective Olefin Hydroarylation(alkenylation) by Sequential Carbonickelation-Hydride Transfer. Journal of the American Chemical Society
  • 7.
    C. Liu et al. (2021) Olefin functionalization/isomerization enables stereoselective alkene synthesis. Nature Catalysis
  • 8.
    H. Wang et al. (2021) Directing-group-free catalytic dicarbofunctionalization of unactivated alkenes. Nature Chemistry
  • 9.
    H. Wang et al. (2021) N-Heterocyclic Carbene–Nickel-Catalyzed Regioselective Diarylation of Aliphatic-1,3-Dienes. ACS Catalysis
  • 10.
    L. Huang et al. (2022) Secondary phosphine oxide-activated nickel catalysts for site-selective alkene isomerization and remote hydrophosphination. Chem Catalysis
  • 11.
    Y. Zhao et al. (2022) Stereoselective Synthesis of Trisubstituted Alkenes by Nickel‐Catalyzed Benzylation and Alkene Isomerization. Angewandte Chemie International Edition
  • 12.
    C. Liu et al. (2022) Synthesis of tri- and tetrasubstituted stereocentres by nickel-catalysed enantioselective olefin cross-couplings. Nature Catalysis
  • 13.
    B. C. Lee et al. (2023) N-Heterocyclic carbenes as privileged ligands for nickel-catalysed alkene functionalisation. Chemical Society Reviews
  • 14.
    Z. Wang et al. (2023) Enantioselective C–C cross-coupling of unactivated alkenes. Nature Catalysis
  • 15.
    Y. Jiang et al. (2021) Synthesis of C-glycosides by Ti-catalyzed stereoselective glycosyl radical functionalization. Chem
  • 16.
    Q. Wang et al. (2022) Iron-catalysed reductive cross-coupling of glycosyl radicals for the stereoselective synthesis of C-glycosides. Nature Synthesis
  • 17.
    Q. Wang et al. (2022) Visible light activation enables desulfonylative cross-coupling of glycosyl sulfones. Nature Synthesis
  • 18.
    Y. Jiang et al. (2022) Catalytic Multicomponent Synthesis ofC‐Acyl Glycosides by Consecutive Cross‐Electrophile Couplings. Angewandte Chemie International Edition
  • 19.
    Y. Wei et al. (2022) A Photoinduced, Nickel‐Catalyzed Reaction for the Stereoselective Assembly of C‐Linked Glycosides and Glycopeptides. Angewandte Chemie International Edition
  • 20.
    C. Liu et al. (2019) Expedient synthesis of E -hydrazone esters and 1 H -indazole scaffolds through heterogeneous single-atom platinum catalysis. Science Advances
  • 21.
    Z. Chen et al. (2019) Cobalt Single‐Atom‐Intercalated Molybdenum Disulfide for Sulfide Oxidation with Exceptional Chemoselectivity. Advanced Materials
  • 22.
    J. Liu et al. (2021) Molecular engineered palladium single atom catalysts with an M-C1N3 subunit for Suzuki coupling. Journal of Materials Chemistry A
  • 23.
    H. Yang et al. (2022) Catalytically active atomically thin cuprate with periodic Cu single sites. National Science Review
  • 24.
    X. Hai et al. (2023) Geminal-atom catalysis for cross-coupling. Nature
  • 25.
    Q. Wang et al. (2023) StereoselectiveC‐Aryl Glycosylation by Catalytic Cross‐Coupling of Heteroaryl Glycosyl Sulfones. Angewandte Chemie International Edition
  • 26.
    Y. Jiang et al. (2023) Diversification of Glycosyl Compounds via Glycosyl Radicals. Angewandte Chemie International Edition
Share slide
Summary (AI generated)

Is alkene functionalization a good follow-up to Professor Chu's presentation? She explained why these reactions are important. Alkenes serve as regions where different components can be merged to create complex structures. This allows for rapid assembly of molecules and creates diversity in a quick manner.